표준 오차 계산 예제

Last Updated on 2024-03-03 by BallPen

표준 오차 계산 방법을 예제로 알아보아요.

표준 오차 계산 방법에 대한 예제입니다.

문제

어떤 물체의 질량을 측정하기 위해 다음과 같이 총 10번의 측정이 이루어졌다고 가정하겠습니다. 질량은 SI 기본 물리량으로써 측정값의 단위는 kg을 사용합니다.

측정번호측정값(kg)측정번호측정값(kg)
x1x_15.65x6x_65.78
x2x_25.72x7x_75.43
x3x_35.46x8x_85.50
x4x_45.52x9x_95.83
x5x_55.60x10x_{10}5.61

이때 신뢰수준은 95%를 적용합니다.

(a) 측정값의 표준 오차 SEM을 구하세요.

(b) 허용 오차를 이용하여 측정값을 표기하세요.

(a) 측정값의 표준 오차 계산

문제에서 주어진 데이터는 실험세트가 하나인 경우로 총 10개의 측정값으로 구성되어 있습니다.

표준 오차, SEM(Standard Error of Mean)이란 표본 평균에 대한 표준 편차로 정의됩니다. 표준 오차에 대한 식은 다음과 같습니다.

SEM=σn(1)\tag{1} SEM = {{\sigma}\over{\sqrt{n}}}

(1)식에서 σ\sigma는 모집단의 표준편차이고, nn은 측정횟수 입니다. 그러나 우리는 모집단의 표준편차를 모르기 때문에 측정을 통해 얻어진 표본의 표준편차 ss를 모집단의 표준편차 σ\sigma로서 추정하게 됩니다.

따라서 (1)식은 다음과 같이 변경될 수 있습니다.

SEM=sn(2)\tag{2} SEM = {{s}\over{\sqrt{n}}}

이제부터 (2)식의 표준 오차 SEM을 계산하겠습니다. 그러기 위해서는 표준 편차 ss를 구해야 하는데, 이를 위해서는 측정값의 평균 μ\mu가 우선 필요합니다. 평균은 다음과 같습니다.

μ=Σxn=x1+x2++x9+x10n=5.65+5.72++5.83+5.6110=5.61 kg(3)\begin{align} \tag{3} \mu &= {{\Sigma{x}}\over{n}} = {{x_1 + x_2 + \ldots + x_9 + x_{10}}\over{n}}\\[10pt] &={{5.65+5.72+\ldots+5.83+5.61}\over{10}}\\[10pt] &=5.61~\mathrm{kg} \end{align}

위에서 구해진 평균값 μ\mu를 이용하여 표본의 표준 편차 ss를 계산합니다.

s=Σ(xμ)2n1=(5.655.61)2++(5.615.61)2101=0.136(4)\begin{align} \tag{4} s &= \sqrt{{\Sigma(x-\mu)^2}\over{n-1}}\\[10pt] &= \sqrt{{(5.65-5.61)^2 + \ldots + (5.61-5.61)^2}\over{10-1}} \\[10pt] &= 0.136 \end{align}

그러면 최종적으로 (2)식의 표준 오차 SEM은 다음과 같이 구해집니다.

SEM=sn=0.13610=0.043(5)\begin{align} \tag{5} SEM &= {{s}\over{\sqrt{n}}}\\[10pt] &={{0.136}\over{\sqrt{10}}}\\[10pt] &=0.043 \end{align}

(b) 허용 오차와 측정값 표기

측정값을 허용 오차(margin of error)를 활용해 표기하기 위해서는 ‘평균값±\pm허용오차’의 형태로 표기하면 됩니다. 이를 신뢰구간(confidence interval)이라고 합니다. 이때 측정횟수가 10개뿐이므로 t값을 활용해 허용오차를 구하는 것이 좋습니다.

평균값±허용오차=μ±(tα2×sn)=μ±(tα2×SEM)(6)\begin{align} \tag{6} 평균값 \pm 허용오차 &= \mu \pm \Big( t_{{\alpha}\over{2}} \times {{s}\over{\sqrt{n}}} \Big) \\[10pt] &= \mu \pm ( t_{{\alpha}\over{2}} \times {SEM}) \end{align}

이미 위에서 평균값 μ\mu와 SEM은 구해 놓았습니다. 그렇다면 tα2t_{{\alpha}\over{2}}만 구하면 될 것 같아요.

아래의 표는 t-분포표입니다.

이 표는 세로축이 rr로서 표기되어 있는데 이것을 자유도(Degree of freedom)라고 합니다. 일반적으로 측정에서의 자유도 rr이란 측정횟수 nn에서 1을 뺀 값을 말합니다.

즉 측정을 nn=10회 했을 때 자유도 rr은 다음과 같이 9입니다.

r=n1=101=9r = n-1 = 10-1 = 9

t-분포표에서 가로축이 α\alpha로 표시되어 있습니다. 이것은 확률을 뜻합니다.

예를 들어 연구자들이 많이 선택하는 95% 신뢰수준의 경우 α\alpha는 다음 식으로 계산됩니다.

(1α)×100=95%1α=95100α=195100=0.05\begin{align*} (1-\alpha) \times 100 &= 95\% \\[7pt] 1- \alpha &= {{95}\over{100}} \\[7pt] \alpha &= 1-{{95}\over{100}} \\[7pt] &=0.05 \end{align*}

이때 α\alpha는 위에서 구한 값을 그대로 사용하지 않습니다. 그 이유는 t-분포의 양 끝단에서 α\alpha값을 절반씩 나누어 갖기 때문입니다. 그래서 α2{\alpha}\over{2}는 다음과 같습니다.

α2=0.052=0.025{{\alpha}\over{2}} = {{0.05}\over{2}} = 0.025

자 그러면 아래의 표를 이용해 tα2t_{{\alpha}\over{2}}를 찾아 보겠습니다.

rr=9이고, α2{{\alpha}\over{2}}=0.025가 교차하는 숫자를 읽으면 됩니다. 무슨 값이 나오냐면 2.262가 나옵니다.

tα2=2.262t_{{\alpha}\over{2}} = 2.262
표준 오차 계산 을 위한 t-분포표
표준 오차 계산을 위한 t-분포표
(출처 : By Jsmura – Own work, CC BY-SA 4.0)

결국 nn=10, μ\mu=5.61, SEM=0.043의 신뢰 구간은 아래와 같습니다.

5.61(2.262×0.043)μ5.61+(2.262×0.043)5.51μ5.71\begin{align*} 5.61 - (2.262 \times 0.043) \le &\mu \le 5.61 + (2.262 \times 0.043)\\ 5.51 \le &\mu \le 5.71 \end{align*}

또는 (6)식과 같은 형태로 표기하면 아래와 같습니다.

5.61±(2.262×0.043)=5.61±0.097 kg5.61 \pm (2.262 \times 0.043) = 5.61 \pm 0.097~ \mathrm{kg}

이것을 말로 표현하면 “이 물체의 질량에 대한 참값은 5.51 kg보다는 크고 5.71 kg보다는 작은 구간내에 있을 확률이 95%이다”라는 것을 의미합니다.

흥미롭고 도움이 되는 글이었나요? 리뷰를 부탁드립니다.
[Total: 6 Average: 4.7]

1 thought on “표준 오차 계산 예제”

Leave a Comment